Nicrobiology LABORATORY THEORY & APPLICATION

Michael J. Leboffe & Burton E. Pierce SECOND EDITION

Michael J. Leboffe

San Diego City College

Burton E. Pierce

Book Team

Editorial Assistant: Rayna Bailey Production Manager: Joanne Saliger Production Assistant: Will Kelley

Publisher: Douglas N. Morton Biology Editor: David Ferguson Cover Design: Bob Schram, Bookends, Inc.

Copyright © 2012 by Morton Publishing Company

ISBN 13: 978-0-89582-947-4

Library of Congress Control Number: 2011942014

10 9 8 7 6 5 4 3

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owners.

Printed in the United States of America

elcome to the second edition of Microbiology Laboratory Theory and Application, Brief Edition! The response to the first edition was incredibly positive and we are grateful to the adopters for its reception and their support. Many made useful suggestions for improvement, which have been incorporated herein.

We have made a couple of significant changes and many other more subtle changes. Probably the most noticeable change is the use of professionally rendered artwork throughout the manual. While most of these convey the same information as the originals upon which they were based, they are many times more attractive. Beyond replacing all the artwork, we have replaced or added more than 50 new photographs.

The second, more substantive change is reduction in the use of BSL-2 organisms. Where possible, BSL-2 organisms are replaced with equivalent BSL-1 organisms. However, in some instances, a particular exercise required the use of a BSL-2 organism to work, so it is retained with appropriate caution advised. An example of this is Staphylococcus aureus in the coagulase test. In a few places, you will see the use of a "surrogate" organism. An example of this is shown in Exercise 4-6 (Hektoen Enteric Agar). The strain of Providencia stuartii (BSL-1) produced the same result on the medium as Shigella flexneri (BSL-2) and was, therefore, the obvious alternative. However, because one of the purposes of the medium is to isolate Shigella species, we decided to retain S. flexneri in the recommended organism list with P. stuartii, in parentheses, as a surrogate. Other changes by section are outlined below.

Introduction

Minor changes were made to update the information on BSL categories and strengthen the emphasis on safety. A short treatment of chemical hazards and their standard labeling was added.

Section 1

A new, simple lab comparing the effectiveness of several hand-cleansing agents was added (Exercise 1-1). More importantly, Exercise 1-4 (Common Aseptic Transfers) was rewritten and, we hope, streamlined. Procedural diagrams were also added as was extra emphasis on handling microbes in such a way as to reduce potentially dangerous aerosols. Several new and replacement photos were added. And, we followed the advice of our reviewers to emphasize labeling media before inoculation rather than afterward.

Preface

Section 2

Several new photos were added to improve this section. Exercise 2-13 (Chemical Germicides) was moved to the end of the section and was rewritten to include a more comprehensive procedure using BSL-1 organisms.

Section 3

Exercise 3-1 (Introduction to the Light Microscope) now includes two activities to supplement the theory and rules of microscope usage. These are the letter "e" slide to familiarize students with the inverted image and the colored threads slide to promote practice at fine focusing. Exercise 3-3 (Eukaryotic Microbes) was totally reorganized to reflect current (but still provisional) classification of these organisms by "Eukaryotic Supergroups." Added to Exercise 3-6 (Gram Stain) is artwork illustrating the differences between Gram-positive and Gram-negative walls. The Acid-Fast Stain (Exercise 3-7) now includes the Ziehl-Neelsen protocol in addition to the Kinyoun method. Throughout, some older photomicrographs were replaced with new ones.

Section 4

These exercises were reordered slightly to reflect a more reasonable approach to the material. The photo in Exercise 4-1 (Phenylethyl Alcohol Agar) was replaced with a better one and the Bile Esculin Test was moved to Section 5.

Section 5

Several exercises, previously in Section 4 and Section 9, were moved to Section 5. Now included in this section are Bile Esculin Test (Exercise 5-10), PYR Test (Exercise 5-17), Bacitracin, Novobiocin, Optochin Tests (Exercise 5-20), and CAMP Test (Exercise 5-22).

Section 6

New artwork and several new photos and/or photomicrographs improve the look of this section. And on the advice of our reviewers to catch up with the 21st century, we have written all of the dilution schemes in this section for digital pipettes.

Section 7

New antibiotics were added to the Kirby-Bauer Test (Exercise 7-2) as were a couple of new photos. The *Morbidity and Mortality Weekly Report* (Exercise 7-3) was updated and includes a photo of the CDC. The Epidemic Simulation (Exercise 7-4) was rewritten to place even greater emphasis on the techniques of safely executing the transfers without aerosol or droplet production.

Section 8

Two exercises were removed: precipitin ring test and the dot blot. The latter was replaced with the Bio-Rad ELISA kit (Exercise 8-6).

Section 9

Exercises 9-1, 9-2, and 9-3 (Identification of Unknown) were rewritten with new or revised identification flowcharts, necessitated by changing organism inventories at standard biological supply houses. An attempt was made to reduce the number of media required for each identification to provide more options for tests, and to reduce the number of BSL-2 organisms used.

Appendices

These still provide useful, but supplemental, materials for those that wish to use them. Appendix A (Biochemical Pathways) had a couple of errors removed and some newer information about ATP yields added. Appendix B (Miscellaneous Transfer Methods) was revised to follow the new style used in Exercise 1-3, as were Appendices C and D (involving pipetting). The alternative procedures appendix (formerly Appendix E) was discontinued. All of the alternative dilution schemes using digital pipettors were fully incorporated in Section 6 procedures.

Acknowledgments

First, we want to thank everyone who has adopted our microbiology titles over the last 16 years. It all started with A Photographic Atlas for the Microbiology Laboratory in 1995 (now in its 4th edition). Over the years, it has spawned three other titles: Exercises for the Microbiology Laboratory (1996, also in its 4th edition); Microbiology Laboratory Theory and Application (2002, now in its 3rd edition); and Microbiology Laboratory Theory and Application, Brief (2007, with the 2nd edition resting securely in your hands). Clearly, we have benefitted from suggestions for improvement from innumerable people over the last 16 years and we haven't forgotten you.

We want to thank our colleagues and friends at San Diego City College for their continued support. In alphabetical order, these include Donna DiPaolo, Anita Hettena, Roya Lahijani, David Singer, Minou Spradley, Laura Steininger, and Muu Vu. We would particularly like to thank Debra Reed for her involvement and assistance in running many necessary tests and for her work finding safer alternatives to many of the BSL-2 organisms used in the first edition. We also are grateful to San Diego City College for making lab facilities available through the Civic Center Program. It would be next to impossible to write a laboratory manual without a lab to work in! Lastly, thanks to the Biology 205 students over the years (and in particular the Fall 2011 MW and TTh morning sections) who have performed the labs and have pointed out rough spots that were not apparent to us. While we have been the grateful beneficiaries of occasional suggestions from adopters, we especially want to recognize the efforts of Janice Smith, Tarrant County College, Fort Worth, Texas; Johana Melendez, Hillsborough Community College, Tampa Bay, Florida; and Diane Doidge, Grand View University, Des Moines, Iowa, for reviewing the first edition and for their helpful suggestions. Reviewing a complex work of this size is not an easy task and we are indebted to them for supplying fresh eyes to scrutinize its contents.

As always, we are indebted to the people at Morton Publishing. It is hard to imagine a better group of people for authors to work with. Thanks to Doug Morton (President) for his vision of producing high quality, yet affordable, texts for students. Thanks also go to Chrissy Morton DeMier (Business Manager), David Ferguson (Biology/Acquisitions Editor), Carter Fenton (Sales and Marketing Manager), Joanne Saliger (Production Manager), Will Kelley (Production Assistant), and Rayna Bailey (Editorial Assistant) for playing their parts in putting their authors in a position to be successful. Each person listed plays a crucial role in the publication of our works, but special recognition is owed to Joanne Saliger, because her efforts in designing the layout are seen by the readers. The quality of a book is mostly in its content, but extraordinary design surely makes the book more palatable. Thanks also go to Bob Schram of Bookends, Inc. for the cover design. Finally, we thank the talented people at Imagineering Art in Toronto, Ontario, Canada, for their artistic renderings. Their inclusion is probably the most noticeable change in this edition.

Introduction

Safety and Laboratory Guidelines
Student Conduct
Basic Laboratory Safety
Reducing Contamination of Self, Others, Cultu
Disposing of Contaminated Materials
A Word About Experimental Design

Fundamental Skills for the Micro

1-1 A Comparison of Hand-Cleansing Age
1-2 Glo Germ[™] Hand Wash Education Syst
Basic Growth Media
1-3 Nutrient Broth and Nutrient Agar Prep
Aseptic Transfers and Inoculation Methods
1-4 Common Aseptic Transfers and Inocula
1-5 Streak Plate Methods of Isolation
1-6 Spread Plate Method of Isolation

Microbial Growth

Diversity and Ubiquity of Microorganisms

- 2-1 Ubiquity of Microorganisms2-2 Colony Morphology
- **2-3** Growth Patterns on Slants
- **2-4** Growth Patterns in Broth

Environmental Factors Affecting Microbial

2-5 Evaluation of Media

Aerotolerance

- 2-6 Fluid Thioglycollate Medium
 2-7 Anaerobic Jar
 2-8 The Effect of Temperature on Microbia
- **2-9** The Effect of pH on Microbial Growth
- **2-10** The Effect of Osmotic Pressure on Mic

Contents

••••••	• •	1
	1	
	3	
	3	
res, and the Environment	4	
	5	
	6	
obiology Laboratory		7
ents	8	
tem	15	
paration	19	
ation Methods	26	
	39	
	45	
	• •	51
	52	
	59	
	69	
	73	
Growth		
	77	
	81	
	85	
al Growth	89	
	95	
crobial Growth	.01	

	Contro	l of Pathogens: Physical and Chemical Methods		
	2-11	Steam Sterilization	108	
	2-12	The Lethal Effect of Ultraviolet Radiation on Microbial Growth	113	
	2-13	Chemical Germicides: Disinfectants and Antiseptics	119	
() м	icroso	copy and Staining		125
	3-1	Introduction to the Light Microscope	126	
	3-2	Calibration of the Ocular Micrometer	135	
	3-3	Microscopic Examination of Eukaryotic Microbes	141	
	Bacteri	al Structure and Simple Stains		
	3-4	Simple Stains	159	
	3-5	Negative Stains	165	
	Differe	ntial and Structural Stains		
	3-6	Gram Stain	169	
	3-7	Acid-Fast Stains	177	
	3-8	Capsule Stain	183	
	3-9	Endospore Stain	187	
	3-10	Bacterial Motility: Wet Mount and Hanging Drop Preparations	193	
	3-11	Bacterial Motility: Flagella	197	
	3-12	Morphological Unknown	201	
S		ve Media	•••	207
		d About Selective Media		
		ve Media for Isolation of Gram-positive Cocci	200	
	4-1	, , , , , , , , , , , , , , , , , , , ,		
	4-2 4-3	Columbia CNA With 5% Sheep Blood Agar		
		Mannitol Salt Agar	21/	
		ve Media for Isolation of Gram-negative Rods	221	
	4-4 4-5	MacConkey Agar	221	
	4-5 4-6	Eosin Methylene Blue Agar		
	4-0	Tiektoen Enteric Agai	233	
D	iffere	ntial Tests	• •	237
	A Word	d About Biochemical Tests and Acid-Base Reactions		
	Introdu	uction to Energy Metabolism Tests		
	5-1	Oxidation-Fermentation Test	240	
	Fermer	ntation Tests		
	5-2	Phenol Red Broth	245	
	5-3	Methyl Red and Voges-Proskauer Tests	251	
	Tests lo	lentifying Microbial Ability to Respire		
	5-4	Catalase Test	257	
	A Word	d About Reduction Potential		
	5-5	Oxidase Test	262	

MICROBIOLOGY: LABORATORY THEORY AND APPLICATION, BRIEF

	5-6	Nitrate Reduction Test	267	
	Nutrien	t Utilization Tests		
	5-7	Citrate Test	273	
	Decarb	oxylation and Deamination Tests		
	5-8	Decarboxylation Test	279	
	5-9	Phenylalanine Deaminase Test	283	
	Tests D	etecting Hydrolytic Enzymes		
	5-10	Bile Esculin Test	287	
	5-11	Starch Hydrolysis	293	
	5-12	Urea Hydrolysis	299	
	5-13	Casein Hydrolysis Test	303	
	5-14	Gelatin Hydrolysis Test	307	
	5-15	DNA Hydrolysis Test	311	
	5-16	Lipid Hydrolysis Test	315	
	5-17	PYR Test	319	
	Combin	nation Differential Media		
	5-18	SIM Medium	323	
	5-19	Triple Sugar Iron Agar / Kligler Iron Agar	329	
	Antimi	crobial Susceptibility Testing		
	5-20	Bacitracin, Novobiocin, and Optochin Susceptibility Tests	335	
	Other D	Differential Tests		
	5-21	Blood Agar	341	
	5-22	CAMP Test	347	
	5-23	Coagulase Tests	351	
	5-24	Motility Test	355	
Qu	antit	ative Techniques	• •	359
	6-1	Standard Plate Count (Viable Count)	360	
	6-2	Urine Culture	371	
	6-3	Plaque Assay of Phage Titer	375	
	6-4	Differential Blood Cell Count	381	
	6-5	Environmental Sampling: The RODAC [™] Plate	387	
Me	edical	Microbiology Introduction	•••	391
		l Microbiology		
	7-1	Snyder Test	392	
	7-2	Antimicrobial Susceptibility Test (Kirby-Bauer Method)	397	
	7-3	Morbidity and Mortality Weekly Report (MMWR) Assignment	403	
	7-4	Epidemic Simulation	409	
	Environ	mental Microbiology		
	7-5	Membrane Filter Technique	413	
	7-6	Multiple Tube Fermentation Method for Total Coliform Determination	419	

Food Microbiology

7-7	Methylene Blue Reductase Test	427	
7-8	Making Yogurt	431	
crot	bial Genetics and Serology		435
8-1	Extraction of DNA from Bacterial Cells	436	
8-2	Ultraviolet Radiation Damage and Repair	443	
8-3	Bacterial Transformation: the pGLO [™] System	449	
8-4	Slide Agglutination	457	
8-5	Blood Typing	461	
8-6	ELISA For Detecting Antibodies in a Patient's Sample		
	(The Antibody Capture Method)	467	
entif	fication of Unknowns	×	475
9-1	Identification of <i>Enterobacteriaceae</i>		
9-2		485	
9-3		493	
	ple Test Systems	120	
9-4		501	
9- 1		509	
9-6	Identification of <i>Streptococcus</i> and <i>Streptococcus</i> -like Organisms	507	
00	by Latex Agglutination: The Streptex [®] Rapid Test	517	
pen	dices		
A	Biochemical Pathways		523
B	Miscellaneous Transfer Methods		531
C	Transfers from a Broth Culture Using a Glass Pipette		535
D	Transfers from a Broth Culture Using a Digital Pipettor		539
E			543
-		••	010
ossa	ry	• •	553
lex			561

Mi

-7	Methylene Blue Reductase Test	7
-8	Making Yogurt	l
		10.
rob	ial Genetics and Serology	435
-1	Extraction of DNA from Bacterial Cells	5
-2	Ultraviolet Radiation Damage and Repair	3
-3	Bacterial Transformation: the pGLO [™] System)
-4	Slide Agglutination	7
-5	Blood Typing	l
-6	ELISA For Detecting Antibodies in a Patient's Sample	
	(The Antibody Capture Method)	7
ntif	ication of Unknowns	475
-1	Identification of Enterobacteriaceae 476	5
-2	Identification of Gram-positive Cocci	5
-3	Identification of Gram-positive Rods 493	3
lultip	ble Test Systems	
-4	API 20 E Identification System for Enterobacteriaceae and Other Gram-negative Rods 501	[
-5	Enterotube® II)
-6	Identification of Streptococcus and Streptococcus-like Organisms	
	by Latex Agglutination: The Streptex [®] Rapid Test	7
enc	dices	
	Biochemical Pathways	523
3	Miscellaneous Transfer Methods	531
2	Transfers from a Broth Culture Using a Glass Pipette	535
)	Transfers from a Broth Culture Using a Digital Pipettor	539
	Medium, Reagent, and Stain Recipes	543
ssa	ry	553
		F 0 1
ex.		561

Ide

7-7	Methylene Blue Reductase Test	427	
-8	Making Yogurt	431	
rob	ial Genetics and Serology		435
8-1		436	
3-2		443	
8-3		449	
8-4		457	
8-5		461	
8-6	ELISA For Detecting Antibodies in a Patient's Sample		
	(The Antibody Capture Method)	467	
		x	
ntif	ication of Unknowns		475
)-1	Identification of <i>Enterobacteriaceae</i>	476	
)-2	Identification of Gram-positive Cocci	485	
)-3	Identification of Gram-positive Rods	493	
/ultip	ble Test Systems		
)-4		501	
)-5	·	509	
9-6	Identification of Streptococcus and Streptococcus-like Organisms		
	by Latex Agglutination: The Streptex [®] Rapid Test	517	
oend	dices		
4	Biochemical Pathways		523
3	Miscellaneous Transfer Methods		531
7	Transfers from a Broth Culture Using a Glass Pipette		535
5	Transfers from a Broth Culture Using a Digital Pipettor		539
Ξ			
4	Medium, Reagent, and Stain Recipes.	•	543
ssa	ry		553
ex.			561

AI

7-7	Methylene Blue Reductase Test	427	
7-8	Making Yogurt	431	
Microb	ial Genetics and Serology		435
8-1		436	
8-2	Ultraviolet Radiation Damage and Repair	443	
8-3	Bacterial Transformation: the pGLO [™] System	449	
8-4	Slide Agglutination	457	
8-5	Blood Typing	461	
8-6	ELISA For Detecting Antibodies in a Patient's Sample		
	(The Antibody Capture Method)	467	
		×.	
Identif	ication of Unknowns	• •	475
9-1	Identification of <i>Enterobacteriaceae</i>	476	
9-2	Identification of Gram-positive Cocci	485	
9-3	Identification of Gram-positive Rods	493	
Multip	le Test Systems		
9-4	API 20 E Identification System for Enterobacteriaceae and Other Gram-negative Rods	501	
9-5	Enterotube® II	509	
9-6	Identification of Streptococcus and Streptococcus-like Organisms		
	by Latex Agglutination: The Streptex® Rapid Test	517	
Append	lices		
Α	Biochemical Pathways		523
B	Miscellaneous Transfer Methods		531
С	Transfers from a Broth Culture Using a Glass Pipette		535
D	Transfers from a Broth Culture Using a Digital Pipettor		539
E	Medium, Reagent, and Stain Recipes	•••	543
Glossa	ry	•••	553
Index .			561

